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We examine the following inverse problem. Let the function u (z, z, ¢) satisfy an
equation of form B s
u“=a(z)-a—z-(a(z)u:)~'—P(z,i-5;)14 )
in the halfspace z > 0, z & R", t & (— oo, oo), where P (z, k) is a polynomial of
arbitrary degree in k & R™ with coefficients that are functions of 2, and 4 (z) > 0.
Let u be a solution of Eq, (1), satisfying the conditions

Uljeg=0, au_|,o=208(z, 1) (2

whose Fourier transform with respect to z, v (k, z, 1), is differentiable with respect
to k as many times as the degree of polynomial P.

Note 1. The general conditions ensuring the existence of such a solution are
not known; however, it exists automatically if the differential operator in the right hand
side of Eq. (1) is of second order and elliptic (then u is the solution of the mixed bound-
ary-value problem for a second-order hyperbolic equation [1] ).

We pose the problem: determine the coefficients of operator P (s, i6 / da) if tne

function 1z t)=u(z002 ¥

is known,

It turns out that all the coefficients of polynomial P (z, k) can be uniquely deter-
mined from the function f (z, ) if the coefficient a (z) is known. If a is not known,
the coefficients of polynomial P are determined uniquely as functions of some coordin-
ate y, i.e., of an unknown monotonic function of 2. It is not possible to find the
interrelated functions a (z) and y (z) (we note, however, that if a (z) and the coeffi-
cients of polynomial P are not independent, then the function a can be found fromf;
see Note 3), In order to determine the coefficients of polynomial P it is sufficient to
know in both cases only the first coefficients &m (¢) of the expansion of the Fourier tran-
sform g (k, f) of function f (z,:) in powers of k, viz,, the variable dual to z; we
need to know as many of these coefficients as the degree of polynomial P (cf. [2 — 4]).
The assertion made here is easily proved by the method suggested in an article by the
author (*). It turns out that the following statement is true: if it is known that polynom-
ial P has a free term equal to zero, i.e., P (z, 0) = 0, then all the succeeding coeff-
icients of P are expressed in terms of functions g, (¢) by means of simple explicit for-
mulas,

*) Blagoveshchenskii, A.S,, One-dimensional inverse boundary-value problem for a
second-order hyperbolic equation, Zap. Nauchn, Seminarov Leningrad. Otdel. Mat.
Inst,, Vol.15, 1969,
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Let us derive these formulas in the case when < is a one-dimensional variable and
the degree of polynomial P is two, The extension of the derivation to more complic-
ated situations does not tell us anything essentially new. From the formulas presented
below it follows that the coefficients required depend on the second derivatives of tie
functions; g, (t) is stable in the metric of . Thus, instead of : we introduce the
new coordinate

z
Y= S {7 {a))tds
U
Then, passing to the Fourier transform, we obtain the problem
vy = vy, + (bk +ch?) v (9

tlheo=0s 7 l0=0(), vlo=8(k 1)

Replacing function v (%, y, t) . by its expansion v == v, + kvy + kv 4 0 (¥ in pow-
ess of k, we obtain a chain of problems. For v, (y,t) we have
ort = Yoyyr  Policog =00 oyl =08(1)
Hence vy = —e{t— y) and g, () = — 2 (#) (the necessary condition for the sol-
vability of the inverse problem). Here ¢ (¢) is the Heaviside function,
For vy (y, t} we have

Uy = Vrgy T 80 Piltgg =0, ¥y fymo =0

Hence for t > y 1a(t~y) iy y
n@ == \ bme—y—2mdn—FE\omain— ®
0 0
| aet
€
3" S b(m)(t+y—2n)dn==Mb
Y
/st
0O )=g@=—§ bme—2mdn ©

¢

From formula (6) we see that g, == g;" = 0 at ¢= 0. Ditferentiating (6) twice

with respect to ¢, we find
e — 25 () =b(t/2) M

Substituting expression (7) into (5), we find the representation for vy
n=lnt+N+at—p—aCeit—1y
For v, (¥, ) we have
Vapp = Vg d- oo Br1. o= 0s Zay ]‘u’o =0
Analogously to the preceding we obtain
vy (3, 1) = Me 4+ Nbvy
where Nbv; can be explicitly expressed in terms of b and vi» and, consequently,

by virtue of (5) and (7), in terms of £;. Setting y =20 in (3) and differeatiating
twice with respect to ¢, after some manipulations we obtain

(3)

{
. - . (9)
¢ (‘%‘) o= 285" (1) — 8y (1)~ § drg," (1) ' (t —T)
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Formulas (7) and (9) yield the desired answer,

Note 2, Thecondition P (z, 0) = 0 can be relaxed; in its stead we can req-
uire that the coefficients of polynomial P be linearly-dependent functions of z and
that P (z, k) =0 forsome k, Then the coefficients of P are found explicitly
from the coefficients of the expansion of g (k, t, in powers of k — k.

Note 3. We consider the following example. As is well known [5], the acous-
tic equation has the form

uy = pa? div (p~! grad u) (10)
where p is the density of the medium and a is the velocity of sound. Let the medium
be such that p = A/a, aisa function of 2, A = const. Then in the two-dimensional
case (as also in the three~dimensional case) the inverse problem leads to a problem of
form (4) wherein b =0 and c¢= — a?. From formula (9) it follows that a? (¢/2) =

2g," (t) (g, of necessity equals zero)
2= S a(t) dt

N ote 4, Equation(10) describes gls well (see [2] ) the propagation of elastic
waves of type SH in a layered-inhomogeneous medium if in it we replace p-1 by
p and pa® by (p')7!, where p’ (z) and p (z) are, respectively, the density and
the Lamé parameter of the elastic medium. The results obtained above are applica-
ble if the medium is such that p’p == const.
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